PAPR Reduction in OFDM & MC-CDMA System using Nonlinear Companding Techniques

Prof. (Dr.) Amit Kr. Jain
Ideal Institute of Technology/ECE Department, Ghaziabad, India.
Email: rinku.j19@gmail.com

Abstract - High peak to average power ratio (PAPR) of the transmitted signal is a major drawback of OFDM and MC-CDMA systems. In this paper various existing nonlinear companding transforms are analyzed and compared for the reduction of peak to average power ratio in OFDM and MC-CDMA systems. Nonlinear companding transforms transform the amplitude or power of the original signals into uniform distribution, which can effectively reduce the PAPR for different modulation formats and subcarrier sizes without any complexity increase and bandwidth expansion. Nonlinear companding techniques adjust both large and small signals and can keep the average power at the same level. Nonlinear companding transforms can significantly improve the performance of OFDM and MC-CDMA system including bit-error-rate and PAPR reduction.

Index Terms – Nonlinear companding transform, peak to average power ratio (PAPR), orthogonal frequency division multiplexing (OFDM), Multicarrier code division multiple access (MC-CDMA)

I. INTRODUCTION

As a multicarrier modulation technique, Orthogonal Frequency Division Multiplexing (OFDM) [1] and Multicarrier Code Division Multiple Access (MC-CDMA) [2] has the following advantages: (1) robust to multi-path fading, inter-symbol interference, co-channel interference and impulsive parasitic noise; (2) lower implementation complexity compared with the single carrier solution; and (3) high spectral efficiency in supporting broadband wireless communications. Therefore, OFDM is believed to be a suitable technique for broadband wireless communications and has been used in many wireless standards, such as Digital Audio Broadcasting (DAB), Terrestrial Digital Video Broadcasting (DVB-T), Wireless Local Area Networks (WLAN). Multicarrier Code Division Multiple Access (MC-CDMA), which is a combination of two radio access techniques called Orthogonal Frequency Division Multiplexing (OFDM) and Code Division Multiple Access (CDMA), has attracted more and more attentions as a very promising modulation technique [3].

The main idea behind MC-CDMA is to spread and convert input signals into parallel data streams, which are then transmitted over multiple carriers. MC-CDMA can realize high bit rate and large capacity transmission. Original OFDM and MC-CDMA signals have very high Peak-to-Average Power Ratio (PAPR), which require sophisticated (expensive) radio transmitters with their high power amplifiers operating in a very large linear range otherwise; nonlinear signal distortion occurs and leads to high adjacent channel interference and poor system performance [2].

![Figure 1. OFDM system using non linear companding technique](image1)

![Figure 2. MC-CDMA system using non linear companding technique](image2)

Recently, various schemes have been proposed to reduce the PAPR of OFDM and MC-CDMA signals [4-11]. Among these schemes, nonlinear companding transforms are the most attractive schemes due to their good system performance, the simplicity of implementation, without restriction on the number of subcarriers, the type of constellation and any bandwidth expansion [12-15]. In this paper, we analyze three nonlinear companding techniques, namely “C1(.)”, “C2(.)”[14] and “exponential companding- C(.)”, [15], to reduce the PAPR of...
OFDM signals. These techniques effectively transform the original Gaussian-distributed OFDM signals into uniform-distributed (companded) signals without changing the average power level. Unlike the µ-law companding scheme, which mainly focuses on enlarging small signals, nonlinear companding schemes adjust both small and large signals without bias so that it is able to offer better performance in terms of PAPR reduction, Bit-Error-Rate (BER) and phase error for OFDM and MC-CDMA systems. The rest of this paper is organized as follows.

In Section II, typical OFDM and MC-CDMA system is given and the high PAPR problem is formulated. Then, nonlinear companding techniques, namely “C1(.)”, “C2(.)” and “exponential companding-“C(.)”, is analyzed in Section III to reduce PAPR. In Section IV, the performance of the three companding schemes are studied and compared through computer simulations, followed by conclusions in Section V.

II.PROBLEM FORMULATION

Figure 1&2 shows the block diagram [14], [10] of a typical OFDM and MC-CDMA systems using the nonlinear companding technique for PAPR reduction. Let N denote the number of sub-carriers used for parallel information transmission and let $S_k (0 < k < N-1)$ denote the k^{th} complex modulated symbol in a block of N information symbols. The outputs s_k of the N-point Inverse Fast Fourier Transform (IFFT) of S_k are the OFDM signal samples over one symbol interval, or mathematically

$$ s_n = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} S_k \exp \left(j \frac{2\pi kn}{N} \right) $$

(1)

According to the central limit theorem, it follows that for large values of N, s_n becomes Gaussian distribution with the probability density function (PDF)

$$ f_{sn}(s) = \frac{1}{\sqrt{2\pi}\sigma} \exp \left(-\frac{s^2}{2\sigma^2} \right) $$

(2)

where σ^2 is the variance of the original MCM signals.

Therefore, the signal s_n has distribution with the cumulative distribution function (CDF) as following

$$ F_{sn}(s) = \frac{1}{2} \left(1 + \text{erf} \left(\frac{s}{\sqrt{2}\sigma} \right) \right) $$

(3)

where \text{erf}(x) = \int_{0}^{x} \frac{2}{\sqrt{\pi}} e^{-y^2} dy.

Then, the PAPR of MCM signals s_n in one symbol period is defined as

$$ \text{PAPR}(s_n) = 10 \log \left(\frac{\text{Max}(|s_n|^2)}{\sigma^2} \right) \text{ (dB)} $$

(4)

By using companding transform, s_n are companded before converted into analog waveforms and amplified by the HPAs. $s_n(n)$ is given by $s_n(n) = C(s_n), \ (n = 0, 1, \cdots, N - 1)$, where $C(.)$ is the companding transform function.

Then, OFDM and MC-CDMA signals are transmitted into the radio channel. After passing through both AWGN and the frequency selective fading channel, the received signal can be formulated as $r(n) = s_n(n) + w(n)$, where $w(n)$ is white noise with the variance of σ^2. At the received end of the de-companded MC-CDMA system, $r(n)$ has to be expanded according to $s_n = C^{-1}(s_n) + w_n$. Since the received signal can be formulated as $r(n)$, $C^{-1}(s_n)$ is the de-companding function, or the inverse function of $C(.)$.

III.ANALYSIS OF NONLINEAR COMPANDING TRANSFORMS

In this section, we propose the design criteria of the nonlinear companding transforms, which is based on derivation and analysis of some existing novel nonlinear companding transforms.[14],[15]. As examples, the existing nonlinear companding transforms can effectively reduce the PAPR of the OFDM signals by transforming the statistics of the amplitudes or power of the original OFDM signals into uniform distribution. These novel schemes also have the advantage of maintaining a constant average power level in the nonlinear companding operation. The strict linearity requirements on HPA can then be partially relieved.

Let us denote X and Y as random variables representing the amplitudes of the inputs and outputs signals of the companding transform C_1 with the CDFs marked $F_X(x)$ and $F_Y(y)$, respectively. Since Y is to be desired the uniform distribution in the interval $[0, h] \ (h > 0)$, then the CDFs of Y can be given by

$$ F_Y(y) = \frac{y}{2h} + \frac{1}{2}, \quad 0 \leq y \leq h $$

(5)

Since the $F_X(x)$ and $F_Y(y)$ are strictly monotone increasing functions, they have corresponding inverse functions. At the same time, the companding transform C_1 is also restricted to be a strictly monotone increasing function and has its inverse transform. When these conditions are satisfied, we can deduce these conclusions as following

$$ F_X(x) = \text{Prob}[X \leq x] = \text{Prob}[C_1(X) \leq C_1(x)] = F_Y(C_1(x)) $$

(6)

Therefore, the companding function C_1 is given by the following identity

$$ C_1(x) = F_Y^{-1}[F_X(x)] $$

(7)

Substituting (3) and (5) into (7) shows that
\[C_1(x) = h_1 \text{erf} \left(\frac{x}{\sqrt{2} \sigma} \right), \quad 0 \leq x \leq 1 \quad (8) \]

The positive constant \(h_1 \) determines the average power of the output signals. In order to keep the input and output signals at the same average power level during the companding transform, companding transform \(C_1(\cdot) \) should satisfy \(E[(|s_n|)^2] = E[(|t_n|)^2] \). Therefore, we can obtain

\[\sigma^2 = \int_{-h_1}^{h_1} (tn)^2p(tn)dt \quad (9) \]

Substituting (5) into (9), we can obtain that \(h_1 = \sqrt{3} \sigma \). Therefore, nonlinear companding transform function \(C_1(x) \) can be expressed as

\[C_1(x) = \sqrt{3} \sigma \text{erf} \left(\frac{x}{\sqrt{2} \sigma} \right), \quad 0 \leq x \leq 1 \quad (10) \]

Considering the phase of input OFDM signals, we can obtain another nonlinear companding transform function based on transforming the power of MCM signals into a uniform distribution as following

\[C_2(x) = \text{sgn}(x) \sqrt{2\sigma \text{erf} \left(\frac{|x|}{\sqrt{2} \sigma} \right)} \quad (11) \]

Similarly, in order to keep the average power of the companded OFDM signals the same level with that of the original OFDM signals, namely \(E[(|s_n|)^2] = E[(|t_n|)^2] \), and thus, the parameter \(h_2 \) can be obtained \(h_2 = 2\sigma \). Therefore, \(C_2(x) \) can be expressed as

\[C_2(x) = \text{sgn}(x) \sqrt{2\sigma \text{erf} \left(\frac{|x|}{\sqrt{2} \sigma} \right)} \quad (12) \]

In the same way, the nonlinear transform function \(C(x) \) can be derived

\[C(x) = \sqrt{6}\sigma [1 - \exp \left(-\frac{x^2}{2\sigma^2} \right)] \quad (13) \]

It belongs to the type of “Exponential Companding Transform”[15]. Considering the phase of input signals, the exponential companding function \(C(x) \) is given by

\[C(x) = \text{sgn}(x) d \int_{-\infty}^{x} \left[1 - \exp \left(-\frac{y^2}{2\sigma^2} \right) \right] dy \quad (14) \]

where \(\text{sgn}(x) \) is the sign function. The positive constant \(\alpha \) determines the average power of output signals. The companded signals have uniformly distributed amplitudes and power, respectively, for the cases \(d=1\) and \(d=2 \). At the receiver side, the inverse function of \(C(x) \) is used in the de-companding operation.

Figure 2(a) depicts the profiles of three types of nonlinear companding transforms \(C_1(\cdot) \), \(C_2(\cdot) \), and \(\mu \)-law, from that we can see the proposed nonlinear companding transforms can compress large signals and expand small signals simultaneously. However, \(\mu \)-law transform only enlarges small signals and does not change the signal peaks, which increases average power of the companded signals.

Figure 2(b) shows exponential companding function \(C(x) \) with degree ‘d’ as a parameter. The exponent ‘d’ is called the degree of a specific exponential companding scheme. The companded signals have uniformly distributed amplitudes and powers, respectively, for the cases \(d=1\) and \(d=2 \). When \(d=2 \), the proposed function can compress large input signals and expand small signals simultaneously.

IV. PERFORMANCE EVALUATION

To verify the performance of the nonlinear companding schemes in the PAPR reduction and BER performance, the simulation parameters are set as follows. For OFDM system: BPSK modulation, the number of data symbols per user \(N \) is 8, 16, 32 & 64. For MC-CDMA system: BPSK modulation, the number of data symbols per user \(N \) is 8 and 16, the number of active users \(K \) is 2 and
Hadamard transform is used as spreading code with length \(L = 8 \). In order to obtain sufficient transmit power, most radio systems often employ HPAs in the transmitter.

Table I
OFDM PAPR reduction comparison

<table>
<thead>
<tr>
<th>(N)</th>
<th>Ideal</th>
<th>(C_1(\cdot))</th>
<th>(C_2(\cdot))</th>
<th>(C(\cdot)) (d=1)</th>
<th>(C(\cdot)) (d=2)</th>
<th>(\mu)-law</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>3.010</td>
<td>1.906</td>
<td>1.491</td>
<td>1.986</td>
<td>2.128</td>
<td>2.754</td>
</tr>
<tr>
<td>16</td>
<td>2.916</td>
<td>2.119</td>
<td>1.403</td>
<td>2.185</td>
<td>2.433</td>
<td>2.701</td>
</tr>
<tr>
<td>32</td>
<td>5.016</td>
<td>3.920</td>
<td>2.589</td>
<td>4.014</td>
<td>4.376</td>
<td>4.676</td>
</tr>
<tr>
<td>64</td>
<td>8.304</td>
<td>6.683</td>
<td>4.151</td>
<td>6.826</td>
<td>6.983</td>
<td>7.762</td>
</tr>
</tbody>
</table>

PAPR reduction comparison of OFDM for various companding transforms are given in Table I. For different sub carrier sizes, the reduction in PAPR is calculated for four companding transforms \(C_1(\cdot), C_2(\cdot), C(\cdot) \) and \(\mu \)-law. Ideal value of PAPR is calculated without applying any companding transform. The reduction in PAPR increases with the increase in number of sub carriers. For various subcarrier sizes \(N = 8, 16, 32 \) and 64) companding transform \(C_2(\cdot) \) gives the best reduction in PAPR. The PAPR value calculated for \(N = 64 \), BPSK shows a reduction of 1.621db can be obtained for \(C_1(\cdot) \) and a reduction of 4.153db can be obtained for \(C_2(\cdot) \) end a reduction of 1.478 db can be obtained for \(C(\cdot)\),exponential companding for \(d=1 \).Obviously, the signals companded by the nonlinear companding transforms \(C(\cdot) \), \(C_1(\cdot) \), \(C_2(\cdot) \) can reduce the PAPR greater than that of \(\mu \)-law companding transform.

Table II
2 USER MC-CDMA PAPR reduction comparison

<table>
<thead>
<tr>
<th>(N)</th>
<th>Original</th>
<th>(C_1(\cdot))</th>
<th>(C_2(\cdot))</th>
<th>(C(\cdot)) (d=1)</th>
<th>(C(\cdot)) (d=2)</th>
<th>(\mu)-law</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>12.4</td>
<td>6.44</td>
<td>4.24</td>
<td>6.55</td>
<td>6.55</td>
<td>11.1</td>
</tr>
<tr>
<td>16</td>
<td>9.40</td>
<td>3.76</td>
<td>2.58</td>
<td>3.75</td>
<td>3.75</td>
<td>8.03</td>
</tr>
<tr>
<td>(N)</td>
<td>Ideal</td>
<td>(C_1(\cdot))</td>
<td>(C_2(\cdot))</td>
<td>(C(\cdot)) (d=1)</td>
<td>(C(\cdot)) (d=2)</td>
<td>(\mu)-law</td>
</tr>
<tr>
<td>8</td>
<td>10.7</td>
<td>5.34</td>
<td>4.12</td>
<td>5.50</td>
<td>5.24</td>
<td>9.57</td>
</tr>
<tr>
<td>16</td>
<td>7.68</td>
<td>3.13</td>
<td>0.96</td>
<td>2.28</td>
<td>1.99</td>
<td>6.46</td>
</tr>
</tbody>
</table>

PAPR reduction comparison of MC-CDMA for various companding transforms are given in Table II &III. The companding transform \(C_2(\cdot) \) gives the best reduction in PAPR among all other transforms for 2 user and 3 user MC-CDMA.

The wireless channel is assumed to be AWGN. Figure3&4 depicts the performance of BER versus signal-to-noise ratio (SNR) of actual signals under different companding schemes. Note that, the performance bound curve marked with “Ideal” is obtained without nonlinear transform and ignoring the effect of SSPA, which means directly transmitting the original MCM signals into channel. It has the best BER performance, but it has an extremely high PAPR compared with that of companded signals.

Moreover, from Figure. 3 for OFDM system, compared to all companding schemes, \(C_1(\cdot) \) can offer better BER performance, and it is only about 0.12dB loss compared to the case without any companding scheme at \(BER = 10^{-2} \). \(C_1(\cdot) \) can obtain an improvement of BER performance about 3.0 dB relative to \(C_2(\cdot) \), but it has higher PAPR than that of \(C_2(\cdot) \).

From Figure 4 for MC-CDMA system, compared to all companding schemes, \(C_1(\cdot) \) can offer better BER performance, and it is only about 0.12dB loss compared to the case without any companding scheme at \(BER = 10^{-2} \). \(C_1(\cdot) \) can obtain an improvement of BER performance about 3.0 dB relative to \(C_2(\cdot) \), but it has higher PAPR than that of \(C_2(\cdot) \).

Due to the high PAPR, ideal OFDM&MC-CDMA signals have a very sharp, rectangular-like power spectrum [14]. This good property will be affected by the PAPR reduction schemes. Non linear companding scheme has
much less impact on the original power spectrum [15].
the major reason that the non linear companding scheme
not only enlarges the small amplitude signals but also
compresses the large amplitude signals, while maintains
the average power unchanged by properly choosing pa-
rameters, which can increase the immunity of small am-
plitude signals from noise. The signals companded by
$C_1(\cdot)$ have a good spectrum characteristic and have al-
most no spectral regrowth caused by the PAPR reduction.
For $C_2(\cdot)$ nonlinear transform[14], it has the worst power
spectrum, which may be caused by transforming the
power not amplitude of OFDM&MC-CDMA into a uni-
form distribution, so that it can bring out-of-band distor-
tion and result in more severe inter-carrier interference.

V. CONCLUSION

Non-linear companding transform is an effective
technique in reducing the PAPR of OFDM&MC-CDMA
signals. In addition, the schemes based on nonlinear
companding techniques have low implementation com-
plexity and no constraint on modulation format and sub-
carrier size. In this paper, three nonlinear companding
transforms based on the derivation and theoretical analy-
sis of some existing nonlinear companding transforms
were analyzed and evaluated for reducing the PAPR of
OFDM&MC-CDMA signals. The BER performance of
the nonlinear companding transforms was also studied by
mat lab simulation. It is proved that the best tradeoff be-
tween BER performance and PAPR reduction can be
achieved by $C_1(\cdot)$ among these nonlinear transforms but
$C_2(\cdot)$ has the best PAPR reduction. Simulation results
have shown that $C_1(\cdot)$ companding scheme could offer
better system performance in terms of PAPR reduction,
power spectrum, BER for MC-CDMA system than
OFDM system.

REFERENCES

[1] Y. Wu and W. Y. Zou, “Orthogonal frequency division mul-
tiplexing: a multi-carrier modulation scheme,” IEEE
ple construction of ofdm-cdma signals with low peak-to-
scheme for reduction of peak to mean envelope power ra-
tio of multicarrier transmission schemes,” IEE Electron.
average power ratio by optimum combination of partial
power reduction using partial transmit sequences: a subop-
timal approach based on dual layered phase sequencing.”
partition scheme for partial transmit sequence ofdm,” IEEE
partition scheme for partial transmit sequence ofdm,” IEEE
[10] E Alsusa & Lin Yang, “MC-CDMA Specific PAPR Re-
duction Technique Using Spreading Code Redistribution”
in Proc. IEEE Vehicular Technology Conf ,Fall
the peak-to average power ratio of multicarrier modulation
nique for papr reduction of coded ofdm signal,” IEEE
[13] X. Wang, T. T. Tjhung, and C. S. Ng, “Reduction of peak-
to-average power ratio of ofdm system using a compand-
[14] Tao Jiang, Weidong Xiang, Paul C. Richardson, Daimeing
Qu, and Guangxi Zhu “On the Nonlinear Companding
Transform for Reduction in PAPR of MCM Signals” IEEE
Transaction on Wireless communications, Vol. 6, No. 6,
June 2007
[15] Tao Jiang, Yang Yang, Yong-Hua Song “Exponential
Companding Technique for PAPR Reduction in OFDM
2, June 2005